quantitative biology + synthetic biology + systems biology

Interdisciplinary and collaborative

We have backgrounds ranging across physics, computer science, microbiology, synthetic biology and genetics.


Group retreat, Stratford 2022
Coal Drops yard, 2021
Regents park, 2020
Rockefeller Building xmas party, 2019

Group retreat, Bath 2018

Current group members

Prof. Chris P Barnes
Dr Linda Dekker
Dr Jack Rutter
Dr Pedro Fontanarrosa
Dr Soutrick Das
Dr Jurgen Riedel
Kimberley Owen
Chania Clare
Kathleen Zhang
Qing Ong

Past group members

Dr Mohamed Ali al-Badri. PDRA 2020-2024. Now a Senior ML Engineer at Nucleome Therapeutics
Dr Bingxin Lu. PDRA 2019-2023. Now a Surrey Future Fellow at University of Surrey
Dr Will Cross. Visiting Fellow 2021-2023. Now a Lecturer (Assistant Prof.) at University of Westminster
Dr Alex Fedorec. PhD/PDRA 2014-2022. Now a Lecturer (Assistant Prof.) at UCL
Dr Neythen Treloar. PhD/PDRA 2018-2023. Now a Senior Data Scientist at Bactobio
Dr Ke Yan Wen. PDRA 2019-2022. Now a Senior Scientist at BactoBio
Dr Behzad Karkaria. PhD/PDRA 2017-2021. Now a AI/ML Engineer at GSK
Dr Luca Rosa. PhD student 2017-2021. Now a Synthetic Biology Engineer at Micrographia Bio
Ms Clare Robinson. Research Assistant 2019-2020. Now doing a PhD with David Riglar, Imperial College
Dr Josh Russell-Buckland. PhD student 2016-2020. Now a software engineer at Guardian News and Media
Dr Marc Williams. PhD student 2014-2018. Now a Research Fellow with Sohrab Shah, Memorial Sloan Kettering
Dr Tanel Ozdemir. PhD student 2013-2017. Now an Investment Associate at AlbionVC
Dr Lourdes Sriraja. PhD student 2013-2017. Now a PDRA with Tariq Enver, UCL Cancer Institute
Dr Mae Woods. PDRA 2013-2018. Now at Baylor College of Medicine
Dr Miriam Leon. PhD student 2012-2016. Now a Senior Data Scientist at Lyft

Mutational processes

Fig: Modelling chromosomal gain and loss within a stochastic branching process

MA al-Badri, WCH Cross, CP Barnes (2024). Explainable deep learning on 7500 whole genomes elucidates cancer-specific patterns of chromosomal instability. bioRxiv, 2024.03.08.584160

B Lu, S Winnall, W Cross, CP Barnes (2024). Cell-cycle dependent DNA repair and replication unifies patterns of chromosome instability. bioRxiv, 2024.01.03.574048

Lu, B., Curtius, K., Graham, T.A., Yang, Z., Barnes, C.P. (2023). CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples. Genome biology, 24 doi:10.1186/s13059-023-02983-0

Gabbutt, C., Schenck, R.O., Weisenberger, D.J., Kimberley, C., Berner, A., Househam, J., ...Patel, R. (2022). Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nature Biotechnology, doi:10.1038/s41587-021-01109-w

Bollen, Y., Stelloo, E., van Leenen, P., van den Bos, M., Ponsioen, B., Lu, B., ...Snippert H.J.G. (2021). Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nature Genetics, doi:10.1038/s41588-021-00891-2

Williams, M.J., Zapata, L., Werner, B., Barnes, C.P., Sottoriva, A., Graham, T.A. (2020). Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife, 9 doi:10.7554/eLife.48714

Williams, M.J., Werner, B., Heide, T., Curtis, C., Barnes, C.P., Sottoriva, A., Graham, T.A. (2018). Quantification of subclonal selection in cancer from bulk sequencing data. Nature Genetics 2018 Jun;50(6):895-903. doi:10.1038/s41588-018-0128-6
Article in The Times

Woods M.L., Barnes C.P. (2016). Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair. PLoS Comput Biol. 2016 Oct 14;12(10):e1005131. doi:10.1371/journal.pcbi.1005131

Williams, M.J., Werner, B, Barnes, C.P., Graham, T.A., & Sottoriva, A. (2016). Identification of neutral tumor evolution across cancer types. Nature Genetics, 2016 Jan 18. doi:10.1038/ng.3489

Chaidos, A, Barnes, C.P. et. al. (2013). Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood. 2013 Jan 10;121(2):318-28. doi:10.1182/blood-2012-06-436220

Microbiome engineering

Fig: (Left) Fluorescent bacteria colonising the gut of a C. elegans nematode worm. (Right) An engineered GRN in E. coli enabling bacteriocin production control through quorum sensing (SPoCK system)

C Clare, JW Rutter, AJH Fedorec, S Frank, CP Barnes (2024). Bacterial microcompartment utilisation in the human commensal Escherichia coli Nissle 1917. bioRxiv, 2024.05. 13.593892

JW Rutter, L Dekker, C Clare, ZF Slendebroek, KA Owen, JAK McDonald, AJH Fedorec, CP Barnes (2024). A bacteriocin expression platform for targeting pathogenic bacterial species. Nature Communications 15 (1), 6332, doi: 10.1038/s41467-024-50591-8

Karkaria, B.D., Manhart, A., Fedorec, A.J.H., Barnes, C.P. (2022). Chaos in synthetic microbial communities. PLoS Computational Biology, 18 (10), doi:10.1371/journal.pcbi.1010548

Rutter, J.W., Dekker, L., Owen, K.A., Barnes, C.P. (2022). Microbiome engineering: engineered live biotherapeutic products for treating human disease. Frontiers in Bioengineering and Biotechnology, 10 doi:10.3389/fbioe.2022.1000873

Rutter, J.W., Dekker, L., Fedorec, A.J.H., Gonzales, D.T., Wen, K.Y., Tanner, L.E.S., ...Barnes, C.P. (2021). Engineered acetoacetate-inducible whole-cell biosensors based on the AtoSC two-component system. Biotechnology and Bioengineering, doi:10.1002/bit.27897
Download the data here

Fedorec, A.J.H., Karkaria, B.D., Sulu, M., Barnes, C.P. (2021). Single strain control of microbial consortia. Nat Commun, 12, 1977. doi:10.1038/s41467-021-22240-x
Download the data here

Karkaria, B.D., Fedorec, A.J.H., Barnes, C.P. (2021). Automated design of synthetic microbial communities. Nat Commun, 12, 672. doi:10.1038/s41467-020-20756-2
Download the data here
Code available on GitHub

Fedorec, A.J.H., Robinson, C.M., Wen, K.Y., Barnes, C.P. (2020). FlopR: An Open Source Software Package for Calibration and Normalization of Plate Reader and FlowCytometry Data. ACS Synth Biol, doi:10.1021/acssynbio.0c00296
Download the data here
Code available on GitHub

Treloar, N.J., Fedorec, A.J.H., Ingalls, B., Barnes, C.P. (2020). Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLoS Comput Biol, 16 (4), e1007783. doi:10.1371/journal.pcbi.1007783
Download the data here
Code available on GitHub

Wen, K.Y., Rutter, J.W., Barnes, C.P., Dekker, L. (2019). Fundamental Building Blocks of Whole-Cell Biosensor Design. In Thouand, G. (Ed.), Handbook of Cell Biosensors. (pp. 1-23). Springer International Publishing.

Rutter, J.W., Ozdemir, T., Galimov, E.R., Quintaneiro, L.M., Rosa, L., Thomas, G.M., Cabreiro, F., Barnes, C.P. (2019). Detecting Changes in the Caenorhabditis elegans Intestinal Environment Using an Engineered Bacterial Biosensor. ACS Synth Biol, doi:10.1021/acssynbio.9b00166
Download the data and code here

Shaw, L., Bassam, H., Barnes, C.P., Walker, A., Klein, N., Balloux, F. (2019). Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME Journal, doi:10.1038/s41396-019-0392-1
Article in The Telegraph

Fedorec, A.J.H., Ozdemir, T., Doshi, A., Ho, Y.-.K., Rosa, L., Rutter, J., ...Barnes, C.P. (2019). Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. iScience, doi:10.1016/j.isci.2019.03.019
Download the data and code here
Plasmids available on addgene

Barnes, C.P., Fedorec, A.J.H. (2018). Five amazing ways redesigning biological cells could help us fight cancer. The Conversation

Ozdemir, T., Fedorec, A.J.H., Danino, T., Barnes, C.P. (2018). Synthetic Biology and Engineered Live Biotherapeutics: Toward Increasing System Complexity. Cell Systems, 7 (1), 5-16. doi:10.1016/j.cels.2018.06.008

Biological computation

Fig: Patterning as a spatial computation. Each panel represents a different interpretation of a morphogen gradient produced from two sources A and B

AJH Fedorec, NJ Treloar, KY Wen, L Dekker, QH Ong, G Jurkeviciute, E Lyu, JW Rutter, KJY Zhang, L Rosa, A Zaikin, CP Barnes (2024). Emergent digital bio-computation through spatial diffusion and engineered bacteria Nature Communications 15 (1), 4896, doi: 10.1038/s41467-024-49264-3

Otero-Muras, I., Perez-Carrasco, R., Banga, J.R., Barnes, C.P. (2023). Automated design of gene circuits with optimal mushroom-bifurcation behavior. iScience, 26 (6), doi:10.1016/j.isci.2023.106836

Treloar, N.J., Braniff, N., Ingalls, B., Barnes, C.P. (2022). Deep reinforcement learning for optimal experimental design in biology. PLoS Computational Biology, 18 (11), doi:10.1371/journal.pcbi.1010695

Treloar, N., Wen, K.Y., Fedorec, A., Barnes, C. (2021). SynBioBrain: building biological computers from bacterial populations. The Project Repository Journal, doi:doi.org/10.54050/PRJ1117751

Karkaria, B.D., Treloar, N.J., Barnes, C.P., Fedorec, A.J.H. (2020). From microbial communities to distributed computing systems Frontiers in Bioengineering and Biotechnology 8, 834, doi:doi.org/10.3389/fbioe.2020.00834

Dalchau, N., Szép, G., Hernansaiz-Ballesteros, R., Barnes, C.P., Cardelli, L., Phillips, A., Csikász-Nagy, A. (2018). Computing with biological switches and clocks. Natural Computing, 1-19. doi:10.1007/s11047-018-9686-x

Perez-Carrasco, R., Barnes, C.P., Schaerli, Y., Isalan, M., Briscoe, J., Page, K.M. (2018). Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Systems. doi:10.1016/j.cels.2018.02.008

Boeing, P., Leon, M., Nesbeth, D.N., Finkelstein, A., Barnes, C. (2018). Towards an Aspect-Oriented Design and Modelling Framework for Synthetic Biology. Processes, 6 (9), doi:10.3390/pr6090167

Leon, M., Woods, M.L., Fedorec, A.J.H., & Barnes, C.P. (2016) A computational method for the investigation of multistable systems and its application to genetic switches. BMC Systems Biology 2016 Dec 7;10(1):130. doi:10.1186/s12918-016-0375-z

Woods, M., Leon, M., Perez-Carrasco, R. & Barnes, C.P. (2016) A statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synthetic Biology 5 (6), pp 459–470. doi:10.1021/acssynbio.5b00179

Cohen, M., Kicheva, A., Ribeiro, A., Blassberg, R., Page, K. M., Barnes, C. P. & Briscoe, J. (2015). Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nature Communications, 6. doi:10.1038/ncomms7709

Cohen, M., Page, K. M., Perez-Carrasco, R., Barnes, C. P., & Briscoe, J. (2014). A theoretical framework for the regulation of Shh morphogen-controlled gene expression. Development, 141(20), 3868-3878. doi:10.1242/dev.112573

Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., & Stumpf, M. P. H. (2014). A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nature Protocols, 9(2), 439-456. doi:10.1038/nprot.2014.025